OCT 4 – 6, 2015 • Queens University • Kingston, ON Canada Challenges and Innovations in Tunnelling

Microtunnelling Advancements in North America

John Grennan Ward and Burke Microtunnelling

Marc Gelinas
Hatch Mott MacDonald

October 5, 2015

Presentation Goals

- Provide an overview of the North American microtunnelling industry
- Highlight industry-advancing microtunnel projects recently completed/currently underway in Ontario

Presentation Outline

- Definition of Microtunnelling
- History of Microtunnelling
 - Worldwide → Ontario
- Current state of the industry
 - North America → Ontario
- Industry Advancing Projects in Ontario
 - Long-distance drives
 - Curved drives
 - Drives in rock
 - Large diameter installations

Microtunnelling

DEFINITION

- A trenchless method of pipeline installation which includes <u>all</u> of the following features:
 - Remote-controlled
 - Guided
 - Pipe jacking
 - Continuously supported

Microtunnelling History

- Developed in Asia in the late 1960's (Komatsu, Iseki, Mitsubishi, etc.)
 - Offshoot of slurry shield tunnelling
- Gained popularity in Europe in the 1980s (Iseki, Herrenknecht, Soltau, Wirth, etc.)

Microtunnelling History

- North American industry developed in the late 1980's/1990s (Akkerman, Herrenknecht, Iseki, etc.)
- First project in Ontario = Welland, 1987 (Iseki)
 - Subsequent projects in 1990, 1994, 1995, 1998 (approx. 2500m total)
 - Mixed success, issues in tills and cobble/boulder-laden soils

- OCPA design manual for microtunnel pipe
- 12 year hiatus (1999-2011)

Microtunnelling History

- Gore Road Project (2011)
 - Project tendered as a "traditional" tunnel
 - Microtunnelling proposed as an alternative
 - Single-pass installation
 - Increased clearance below critical utilities
 - Jacking pipe (and just about everything else) imported from Ireland

State of the Industry

NORTH AMERICA

- Over 30 Microtunnel Contractors
- Multiple equipment manufacturers with North American presence
 - Others entering the market
- ASCE Guidelines (ASCE 36-15)
- Annual short course at the Colorado School of Mines (over 20 years running)

State of the Industry

ONTARIO

- 3 Ontario-based microtunnel contractors
 - Over 10 equipment spreads
 - 750 to 3300mm diameter (OD)
- 2 concrete jacking pipe manufacturers
- OPSS in development
 - Final draft completed on Sept. 30, 2015

Industry Advancements

- In the past 4 years, there have been an number of industry-advancing microtunnel projects
- Focus on Ontario-based projects
 - Long-Distance Drives
 - Curved Drives
 - Drives in Rock
 - Large Diameter Installations

- Elgin Mills PD6 600mm
 CPP Feedermain Project
- North Don Sanitary Sewer
- 2nd Concession Reconstruction

Elgin Mills PD6 600mm CPP Feedermain Project

- 740m Drive Length
- 1500mm ID Reinforced Concrete MT Pipe
- 3 Horizontal Curves
 - R=400m L=180m
 - R=3000m L=83m
 - R=400m L=80m
- Glacial Tills, Sands, Silts
- Longest Microtunnel in Canada
- Longest Curved Microtunnel in North America

Elgin Mills PD6 600mm CPP Feedermain Project

Elgin Mills PD6 600mm CPP Feedermain Project

North Don Sanitary Sewer

- Max Drive Length 635m
- 600m and 467m Drive also on the project
- 1200mm ID Reinforced Concrete Microtunnel Pipe
- Glacial Till, Sand, Silt

North Don Sanitary Sewer

North Don Sanitary Sewer

2nd Concession Reconstruction – Trunk Sewer

- Max Drive Length 668m
- 1200mm ID Reinforced Concrete Pipe
- Glacial Till, Sand, Silt
- Longest 1200mm ID
 Drive in North America

2nd Concession Reconstruction – Trunk Sewer

Vertical Profile

2nd Concession Reconstruction – Trunk Sewer

Horizontal Profile

- Keswick WPCP Effluent Outfall Expansion Project
 - First curve in Canada
 - First spatial curved microtunnel in North America
 - First Wet Reception of MTBM in Canada
- West Don Sanitary Trunk Sewer
 - Tight Radius microtunnelling R=250m

Keswick WPCP Effluent Outfall Expansion Project

- Increase diameter to 1200mm ID RCP
- Introduction of curves to eliminate shafts

Keswick WPCP Effluent Outfall Expansion Project

- Longest Drive = 335m
- Spatial Drive = 208m
- Vertical R = 6600m; Horizontal R = 875m

West Don Sanitary Trunk Sewer

- 350m long tunnel
- 250m continuous radius
- 1200mm ID RCP
- 20m deep launch shaft
- 15m water head
- Glacial till with boulders
- First use of Jack Control
 System in Canada

West Don Sanitary Trunk Sewer

• Site Layout

West Don Sanitary Trunk Sewer

- Jack Control Technology
 - Use of hydraulic joint packer at pipe joints instead of a wood based packer to evenly distribute the jacking force through the pipe wall

- North Trunk Trenchless Scugog River Crossing Kawartha
 - 220m 1500mm ID 120 to 150 MPa Limestone
- Kenilworth Ave. Combined Sewer Overflow Project
 - 319m 1500mm ID Queenston Shale and Limestone Layers – Curved Alignment
- Etobicoke Creek Under Construction
 - 575m 1800mm ID Alluvium and Georgian Bay Shale

North Trunk Trenchless Scugog River Crossing – Kawartha

Kenilworth Ave. Combined Sewer Overflow Project

Etobicoke Creek Trunk Sanitary Sewer

- 575m long drive
- 1800mm ID RC jacking pipe
- Crossing beneath the busiest runway at Canada's busiest airport
- Georgian Bay formation bedrock

- 2nd Concession Reconstruction Forcemain Casing
 - 330m 2000mm ID 2400mm OD RCP
- 37th St. Storm Sewer Construction Calgary
 - 2500mm ID Installation
- Burbrook TSS London
 - 2500mm ID Installation

2nd Concession Reconstruction – Forcemain Casing

- 330m Long Tunnel
- 2000mm ID RCP
- 11m Deep Launch Shaft
- 7m Water Head
- Saturated Sands and Silts

2nd Concession Reconstruction – Forcemain Casing

2nd Concession Reconstruction – Forcemain Casing

37th St. Storm Sewer Construction - Calgary

- 415m Drive Length
- Tunnelling parallel to existing street
- 2500mm ID RCP
- 15 10m deep shafts
- Bedrock with transition into till conditions

London Burbrook TSS

- 2 crossings (50m & 175m)
- Crossings beneath live rail lines
 - 22 track shunting yard
 - 2 track line
- 2500mm ID RCP
- 8 11m deep shafts
- Saturated sands, gravels, and till

Closing

- The microtunnelling industry in North America is strong
- Growth of the microtunnelling industry in Ontario has been remarkable
- Ontario-based projects are setting new benchmarks, particularly as regards:
 - Curve drives
 - Long-distance drives

Questions

John Grennan john.grennan@wardandburke.com

Marc Gelinas marc.gelinas@hatchmott.com

